Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar;3(1):105-14.
doi: 10.2174/1568010043483953.

Thrombin: a potential proinflammatory mediator in neurotrauma and neurodegenerative disorders

Affiliations
Review

Thrombin: a potential proinflammatory mediator in neurotrauma and neurodegenerative disorders

Z Suo et al. Curr Drug Targets Inflamm Allergy. 2004 Mar.

Abstract

Thrombin is well known in its function as the ultimate serine protease in the coagulation cascade. Emerging evidence indicates that thrombin also functions as a potent signaling molecule that regulates physiologic and pathogenic responses alike in a large variety of cell populations and tissues. Accompanying CNS injury and other cerebral vascular damages, prothrombin activation and leakage of active thrombin into CNS parenchyma has been documented. Due to the irreplaceable feature of neurons, over-reactive inflammatory reactions in the CNS often cause irreversible neuronal damage. Therefore, particular attention is required to develop strategies that restrict CNS inflammatory responses to beneficial, in contrast to neurotoxic ones. In this regard, thrombin not only activates endothelial cells and induces leukocyte infiltration and edema but also activates astrocytes, and particularly microglia, as recently demonstrated, to propagate the focal inflammation and produce potential neurotoxic effects. Recently revealed molecular mechanisms underlying these thrombin effects appear to involve proteolytic activation of two different thrombin-responsive, protease-activated receptors (PARs), PAR1 and PAR4, possibly in concert. Potential therapeutic strategies based on appreciation of the current understanding of molecular mechanisms underlying thrombin-induced CNS inflammation are also discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources