Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 26;357(1):13-6.
doi: 10.1016/j.neulet.2003.11.061.

Activation of ERK5 is mediated by N-methyl-D-aspartate receptor and L-type voltage-gated calcium channel via Src involving oxidative stress after cerebral ischemia in rat hippocampus

Affiliations

Activation of ERK5 is mediated by N-methyl-D-aspartate receptor and L-type voltage-gated calcium channel via Src involving oxidative stress after cerebral ischemia in rat hippocampus

Rui-min Wang et al. Neurosci Lett. .

Abstract

Activation (phosphorylation) and the possible mechanism of extracellular signal-regulated kinase 5 (ERK5) were evaluated after cerebral ischemia-reperfusion (I/R) in the hippocampus in a four-vessel occlusion model of Sprague-Dawley rats. Western blotting showed that ERK5 was strongly activated from 10 min to 1 day and peaked at 30 min of reperfusion after 15 min ischemia. Pretreatment with N-acetylcysteine, a free radical scavenger, effectively inhibited ERK5 activation in a dose-dependent manner. Consistently, ERK5 activation was significantly suppressed by genistein (protein-tyrosine kinase inhibitor), PP2 (specific inhibitor of Src family kinases), nifedipine (L-VGCC blocker) and dextromethorphan (NMDA receptor antagonist), but not 6,7-dinitroquinoxaline-2, 3(1H, 4H)-dione (AMPA receptor antagonist). These results suggested that ERK5 could be significantly activated by I/R, which might be mediated by NMDA receptor and L-VGCC through Src kinase pathway involving oxidative stress in rat hippocampus.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources