Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Apr;45(4):1224-31.
doi: 10.1167/iovs.03-0821.

Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis

Affiliations
Comparative Study

Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis

S Kevin Li et al. Invest Ophthalmol Vis Sci. 2004 Apr.

Abstract

Purpose: The objectives were to determine by nuclear magnetic resonance imaging (MRI) the target sites of ion delivery in the eye during iontophoresis, compare transscleral and transcorneal ocular iontophoresis, and monitor the distribution of a probe ion in the anterior chamber and vitreous after iontophoretic delivery.

Methods: Thirty-minute 2-mA anodal constant current transscleral and transcorneal iontophoresis (current density, 10 mA/cm(2)) was performed on three New Zealand White rabbits in vivo. Intravitreal injection and passive delivery were the controls. Transscleral and transcorneal iontophoresis experiments were conducted with the electrode device placed in the superior cul-de-sac away from the limbus and on the cornea adjacent to the limbus, respectively. During iontophoresis, the current delivered into the eye was monitored using a probe ion (Mn(2+)) with MRI. The distributions of the ion in the aqueous and vitreous humor after iontophoresis, passive delivery, and intravitreal injection were also determined by MRI.

Results: With the short application time, passive diffusion did not deliver a significant amount of the ion into the eye. Whereas transscleral iontophoresis delivered the ion into the vitreous, transcorneal iontophoresis delivered the ion into the anterior chamber. The current pathways during iontophoresis were mainly from the electrode into the eye, perpendicular to the electrode-eye interface beneath the electrode. Electric current along the surface of the globe was relatively minimal. With the present transscleral iontophoresis protocol, the ion penetrated the sclera and traveled as far as 1.5 mm from the electrode-conjunctiva interface into the vitreous. For transcorneal iontophoresis, the ion penetrated the cornea and filled the entire anterior chamber.

Conclusions: MRI can be a useful technique in the study of the penetration of probe compounds in the eye during and after iontophoresis, such as in iontophoresis protocol and device testing. Ocular pharmacokinetic studies using MRI are noninvasive and provide real-time data without perturbation and compound redistribution that can occur during dissection and assay in traditional pharmacokinetic studies. With MRI, it was shown that transscleral iontophoresis, transcorneal iontophoresis, and intravitreal injection deliver ions to different parts of the eye.

PubMed Disclaimer

Publication types

LinkOut - more resources