Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 15;13(10):993-1004.
doi: 10.1093/hmg/ddh119. Epub 2004 Mar 25.

Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol

Affiliations

Haplotypes and SNPs in 13 lipid-relevant genes explain most of the genetic variance in high-density lipoprotein and low-density lipoprotein cholesterol

Hans Knoblauch et al. Hum Mol Genet. .

Abstract

Single nucleotide polymorphisms (SNPs) and derived haplotypes within multiple genes may explain genetic variance in complex traits; however, this hypothesis has not been rigorously tested. In an earlier study we analyzed six genes and have now expanded this investigation to include 13. We studied 250 families including 1054 individuals and measured lipid phenotypes. We focused on low-density cholesterol (LDL), high-density cholesterol (HDL) and their ratio (LDL/HDL). A component analysis of the phenotypic variance relying on a standard genetic model' showed that the genetic variance on LDL explained 26%, on HDL explained 38% and on LDL/HDL explained 28% of the total variance, respectively. Genotyping of 93 SNPs in 13 lipid-relevant genes generated 230 haplotypes. The association of haplotypes in all the genes tested explained a major fraction of the genetic phenotypic variance component. For LDL, the association with haplotypes explained 67% and for HDL 58% of the genetic variance relative to the polygenic background. We conclude that these haplotypes explain most of the genetic variance in LDL, HDL and LDL/HDL in these representative German families. An analysis of the contribution to the genetic variance at each locus showed that APOE (50%), CETP (28%), LIPC (9%), APOB (8%) and LDLR (5%) influenced variation in LDL. LIPC (53%), CETP (25%), ABCA1 (10%), LPL (6%) and LDLR (6%) influenced the HDL variance. The LDL/HDL ratio was primarily influenced by APOE (36%), CETP (27%) and LIPC (31%). This expanded analysis substantially increases the explanation of genetic variance on these complex traits.

PubMed Disclaimer

Publication types