Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 7;279(19):19396-400.
doi: 10.1074/jbc.C400088200. Epub 2004 Mar 25.

Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells

Affiliations
Free article

Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells

Sophia Thore et al. J Biol Chem. .
Free article

Abstract

Phospholipase C (PLC) is a ubiquitous enzyme involved in the regulation of a variety of cellular processes. Its dependence on Ca2+ is well recognized, but it is not known how PLC activity is affected by physiological variations of the cytoplasmic Ca2+ concentration ([Ca2+](i)). Here, we applied evanescent wave microscopy to monitor PLC activity in parallel with [Ca2+](i) in individual insulin-secreting INS-1 cells using the phosphatidylinositol 4,5-bisphosphate- and inositol 1,4,5-trisphosphate-binding pleckstrin homology domain from PLCdelta(1) fused to green fluorescent protein (PH(PLCdelta1)-GFP) and the Ca2+ indicator fura red. In resting cells, PH(PLCdelta1)-GFP was located predominantly at the plasma membrane. Activation of PLC by muscarinic or purinergic receptor stimulation resulted in PH(PLCdelta1)-GFP translocation from the plasma membrane to the cytoplasm, detected as a decrease in evanescent wave-excited PH(PLCdelta1)-GFP fluorescence. Using this translocation as a measure of PLC activity, we found that depolarization by raising extracellular [K+] triggered activation of the enzyme. This effect could be attributed both to a rise of [Ca2+](i) and to depolarization per se, because some translocation persisted during depolarization in a Ca2+-deficient medium containing the Ca2+ chelator EGTA. Moreover, oscillations of [Ca2+](i) resulting from depolarization with Ca2+ influx evoked concentration-dependent periodic activation of PLC. We conclude that PLC activity is under tight dynamic control of [Ca2+](i). In insulin-secreting beta-cells, this mechanism provides a link between Ca2+ influx and release from intracellular stores that may be important in the regulation of insulin secretion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources