Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Aug;25(18):4383-91.
doi: 10.1016/j.biomaterials.2003.10.078.

An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement

Affiliations
Comparative Study

An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement

Volker Alt et al. Biomaterials. 2004 Aug.

Abstract

Infections with multiresistant bacteria have become a serious problem in joint arthroplasty. This study reports about in vitro antibacterial activity against multiresistant bacteria and in vitro cytotoxicity of polymethylmetacrylate bone cement loaded with metallic silver particles with a size of 5-50 nm called NanoSilver. In vitro antibacterial activity against S. epidermidis, methicillin-resistant S. epidermidis (MRSE), and methicillin-resistant S. aureus (MRSA) was studied by microplate proliferation tests. Quantitative elution testing and qualitative ongrowth of human osteoblasts was done to study in vitro cytotoxicity. Only NanoSilver cement showed high-antibacterial activity against all strains, including MRSE and MRSA. Gentamicin cement was not effective against MRSA and MRSE due to the high-level gentamicin resistance of the tested strains. Plain cement did not inhibit proliferation of any strains. There was no significant difference regarding in vitro cytotoxicity between NanoSilver and the non-toxic control. Cytotoxicity of cement loaded with silver salts made this kind of silver unsuitable for all day clinical use in the past. This new form of silver called NanoSilver was free of in vitro cytotoxicity and showed high effectiveness against multiresistant bacteria. If the results can be confirmed in vivo NanoSilver may have a high interest in joint arthroplasty.

PubMed Disclaimer

MeSH terms

LinkOut - more resources