Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;46(3):296-301.
doi: 10.1002/glia.20003.

Glutamine-induced free radical production in cultured astrocytes

Affiliations

Glutamine-induced free radical production in cultured astrocytes

Arumugam R Jayakumar et al. Glia. 2004 May.

Abstract

Ammonia is a neurotoxin implicated in the pathogenesis of hepatic encephalopathy, Reye's syndrome, inborn errors of the urea cycle, glutaric aciduria, and other metabolic encephalopathies. Brain ammonia is predominantly metabolized to glutamine in astrocytes by glutamine synthetase. While the synthesis of glutamine has generally been viewed as the principal means of ammonia detoxification, this presumed beneficial effect has been questioned as growing evidence suggest that some of the deleterious effects of ammonia may be mediated by glutamine rather than ammonia per se. Since ammonia is known to induce the production of free radicals in cultured astrocytes, we investigated whether such production might be mediated by glutamine. Treatment of astrocytes with glutamine (4.5 mM) increased free radical production at 2-3 min (95%; P < 0.05), as well as at 1 and 3 h (42% and 49%, respectively; P < 0.05). Similarly treated cultured neurons failed to generate free radicals. Free radical production by glutamine was blocked by the antioxidants deferoxamine (40 microM) and alpha-phenyl-N-tert-butyl-nitrone (250 microM), as well as by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (500 microM). Free radical production was also blocked by 6-diazo-5-oxo-L-norleucine (1 mM), an inhibitor of glutaminase, suggesting that ammonia released by glutamine hydrolysis may be responsible for the generation of free radicals. Additionally, the mitochondrial permeability transition inhibitor, cyclosporin A, blocked free radical production by glutamine. The results indicate that astrocytes, but not neurons, generate free radicals following glutamine exposure. Glutamine-induced oxidative and/or nitrosative stress may represent a key mechanism in ammonia neurotoxicity.

PubMed Disclaimer

Publication types

LinkOut - more resources