Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 6;43(13):3870-9.
doi: 10.1021/bi036183u.

Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition

Affiliations

Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition

Jinhui Li et al. Biochemistry. .

Abstract

Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, functioning to modulate contractile force by altering the rate of calcium re-sequestration by the Ca-ATPase. Functionally, inhibition by PLB binding is manifested by shifts in the calcium dependence of Ca-ATPase activation toward higher calcium levels; phosphorylation of PLB by PKA reverses the inhibitory action of PLB. To investigate structural changes in the cytoplasmic portion of PLB that result from either the phosphorylation of PLB by cAMP-dependent protein kinase (PKA) or calcium binding to the Ca-ATPase, we have used frequency-domain fluorescence spectroscopy to measure the spatial separation and conformational heterogeneity between N-(1-pyrenyl)maleimide, covalently bound to a single cysteine (Cys(24)) engineered near the membrane surface of the transmembrane domain of PLB, and Tyr(6) in the cytosolic domain. Irrespective of calcium activation of the Ca-ATPase or phosphorylation of Ser(16) in PLB by PKA, we find that PLB remains tightly associated with the Ca-ATPase in a well-defined conformation. However, calcium activation of the Ca-ATPase induces an increase in the overall dimensions of the cytoplasmic portion of bound PLB, whereas PLB phosphorylation results in a more compact structure, consistent with increased helical content induced by a salt link between phospho-Ser(16) and Arg(13). Thus, enzyme activation of the Ca-ATPase may occur through different mechanisms: calcium binding to high-affinity sites within the Ca-ATPase functions to overcome conformational constraints imposed by PLB on the N-domain of the Ca-ATPase; alternatively, phosphorylation stabilizes the backbone fold of PLB to release inhibitory interactions with the Ca-ATPase.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources