Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Jun-Jul;13(6-7):435-44.
doi: 10.1016/0143-4160(92)90056-x.

Mutational analysis of calmodulin in Saccharomyces cerevisiae

Affiliations
Review

Mutational analysis of calmodulin in Saccharomyces cerevisiae

T N Davis. Cell Calcium. 1992 Jun-Jul.

Abstract

Calmodulin is well characterized as an intracellular Ca2+ receptor in nonproliferating tissues such as muscle and brain. Several observations indicate that calmodulin is also required for cellular growth and division. Deletion of the calmodulin gene is a lethal mutation in Saccharomyces cerevisiae, Schizosaccharomyces pombe and Aspergillus nidulans. Expression of calmodulin antisense RNA in mouse C127 cells causes a transient arrest at G1 and metaphase. Although these results indicate calmodulin plays a critical function during proliferation, they do not reveal the function. S. cerevisiae offers an excellent system for identifying calmodulin functions. Because calmodulin mutants can be readily constructed by gene replacement the consequences of mutations in calmodulin can be directly examined in vivo without interference from wild-type calmodulin. The available wealth of information concerning all aspects of the yeast life cycle provides a large framework for interpretation of new results. The recent dissection of cell cycle regulation is just the latest example of the important insights provided by analyzing basic cellular processes in yeast. Whether studies of calmodulin in yeast will reveal a universal function is unknown. One encouraging result is that yeast cells relying on vertebrate calmodulin as their only source of calmodulin survive and grow well, even if the amount of vertebrate calmodulin is equivalent to the normal steady state levels of yeast calmodulin. This review discusses the varied techniques we are using to identify the functions of calmodulin in yeast. As part of the analysis, we are defining the essential elements of calmodulin structure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources