Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr;34(4):689-96.
doi: 10.1016/j.bone.2003.08.014.

Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function

Affiliations
Review

Mitf and Tfe3: members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function

Christine L Hershey et al. Bone. 2004 Apr.

Abstract

The Microphthalmia-associated transcription factor (Mitf) is required for the proper development of several cell lineages including osteoclasts, melanocytes, retinal pigment epithelial cells, mast cells and natural killer cells. Mutations in Mitf in multiple organisms result in osteopetrosis due to defective osteoclast development. Mitf is a member of the basic/helix-loop-helix/leucine zipper (b-HLH-ZIP) transcription factor subfamily named MiT, which also includes Tfe3. Genetic evidence indicates that Mitf and Tfe3 carry out essential functions in osteoclast development. Mitf has been shown to reside downstream of the macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) signaling pathways that are critical for osteoclast proliferation, differentiation and function. Mitf and Tfe3 have been shown to regulate the expression of several target genes necessary for bone degradation by mature osteoclasts. Here, we review the bone and osteoclast phenotypes of animals with mutations in Mitf and Tfe3, Mitf's interaction partners and signaling pathways, and known target genes which, together with others yet to be identified, likely represent key effectors of bone resorption.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources