Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Mar 15;43(4):401-6.
doi: 10.1016/j.toxicon.2004.01.012.

Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons

Affiliations
Comparative Study

Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons

Fabiana Vasconcelos Campos et al. Toxicon. .

Abstract

A number of neurotoxins from venoms of invertebrates and plants are ligands for voltage-gated Na+ channels and are useful tools for studying Na+ channel function and structure. Using whole-cell recordings from vagal afferent nodose neurons, we studied neurotoxins that target Na+ channels. We asked whether Ts3 (an alpha-scorpion toxin) and/or veratridine (a lipid-soluble toxin), could modify the TTX-resistant Na+ current generated by vagal afferent nodose neurons. Nodose TTX-resistant current was not affected by Ts3, whereas Ts3 slowed inactivation of the current generated by TTX-sensitive current component. We found that veratridine inhibited the TTX-resistant Na+ currents on rat nodose neurons. Interestingly, veratridine-modified Na+ channels developed a persistent current that accounted for the large tail current observed. We propose that veratridine modifies TTX-resistant Na+ channels through a mechanism distinct from its actions on other voltage-gated Na+ channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources