Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons
- PMID: 15051403
- DOI: 10.1016/j.toxicon.2004.01.012
Veratridine modifies the TTX-resistant Na+ channels in rat vagal afferent neurons
Abstract
A number of neurotoxins from venoms of invertebrates and plants are ligands for voltage-gated Na+ channels and are useful tools for studying Na+ channel function and structure. Using whole-cell recordings from vagal afferent nodose neurons, we studied neurotoxins that target Na+ channels. We asked whether Ts3 (an alpha-scorpion toxin) and/or veratridine (a lipid-soluble toxin), could modify the TTX-resistant Na+ current generated by vagal afferent nodose neurons. Nodose TTX-resistant current was not affected by Ts3, whereas Ts3 slowed inactivation of the current generated by TTX-sensitive current component. We found that veratridine inhibited the TTX-resistant Na+ currents on rat nodose neurons. Interestingly, veratridine-modified Na+ channels developed a persistent current that accounted for the large tail current observed. We propose that veratridine modifies TTX-resistant Na+ channels through a mechanism distinct from its actions on other voltage-gated Na+ channels.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
