Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders
- PMID: 15059613
- DOI: 10.1016/j.ymgme.2003.12.008
Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders
Abstract
Marked progress has been made over the past 15 years in defining the specific biochemical defects and underlying molecular mechanisms of oxidative phosphorylation disorders, but limited information is currently available on the development and evaluation of effective treatment approaches. Metabolic therapies that have been reported to produce a positive effect include coenzyme Q(10) (ubiquinone), other antioxidants such as ascorbic acid and vitamin E, riboflavin, thiamine, niacin, vitamin K (phylloquinone and menadione), and carnitine. The goal of these therapies is to increase mitochondrial ATP production, and to slow or arrest the progression of clinical symptoms. In the present study, we demonstrate for the first time that there is a significant increase in ATP synthetic capacity in lymphocytes from patients undergoing cofactor treatment. We also examined in vitro cofactor supplementation in control lymphocytes in order to determine the effect of the individual components of the cofactor treatment on ATP synthesis. A dose-dependent increase in ATP synthesis with CoQ(10) incubation was demonstrated, which supports the proposal that CoQ(10) may have a beneficial effect in the treatment of oxidative phosphorylation (OXPHOS) disorders.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous