Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr 2;94(6):724-34.
doi: 10.1161/01.RES.0000122383.60368.24.

Point-counterpoint of sphingosine 1-phosphate metabolism

Affiliations
Free article
Review

Point-counterpoint of sphingosine 1-phosphate metabolism

Julie D Saba et al. Circ Res. .
Free article

Abstract

Sphingosine 1-phosphate (S1P), an evolutionarily conserved bioactive lipid mediator, is now recognized as a potent modulator of cell regulation. In vertebrates, S1P interacts with cell surface G protein-coupled receptors of the EDG family and induces profound effects in a variety of organ systems. Indeed, an S1P receptor agonist is undergoing clinical trials to combat immune-mediated transplant rejection. Recent information on S1P receptor biology suggests potential utility in the control of cardiovascular processes, including angiogenesis, vascular permeability, arteriogenesis, and vasospasm. However, studies from diverse invertebrates, such as yeast, Dictyostelium, Drosophila, and Caenorhabditis elegans have shown that S1P is involved in important regulatory functions in the apparent absence of EDG S1P receptor homologues. Metabolic pathways of S1P synthesis, degradation, and release have recently been described at the molecular level. Genetic and biochemical studies of these enzymes have illuminated the importance of S1P signaling systems both inside and outside of cells. The revelation of receptor-dependent pathways, as well as novel metabolic/intracellular pathways has provided new biological insights and may ultimately pave the way for the development of novel therapeutic approaches for cardiovascular diseases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources