Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts
- PMID: 15060286
- DOI: 10.1126/science.1096033
Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts
Abstract
Fischer-Tropsch type (FTT) synthesis has long been proposed to account for the existence of hydrocarbons in hydrothermal fluids. We show that iron- and chromium-bearing minerals catalyze the abiotic formation of hydrocarbons. In addition to production of methane (CH4aq), we report abiotic generation of ethane (C2H6aq) and propane (C3H8aq) by mineral-catalyzed hydrothermal reactions at 390 degrees C and 400 bars. Results suggest that the chromium component in ultramafic rocks could be an important factor for FTT synthesis during water-rock interaction in mid-ocean ridge hydrothermal systems. This in turn could help to support microbial communities now recognized in the subsurface at deep-sea vents.
Comment in
-
Geochemistry. Life's chemical kitchen.Science. 2004 May 14;304(5673):972-3. doi: 10.1126/science.1098112. Science. 2004. PMID: 15143267 No abstract available.
Similar articles
-
Geochemistry. Life's chemical kitchen.Science. 2004 May 14;304(5673):972-3. doi: 10.1126/science.1098112. Science. 2004. PMID: 15143267 No abstract available.
-
Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.Geobiology. 2013 Jul;11(4):340-55. doi: 10.1111/gbi.12039. Epub 2013 May 6. Geobiology. 2013. PMID: 23647923
-
A serpentinite-hosted ecosystem: the Lost City hydrothermal field.Science. 2005 Mar 4;307(5714):1428-34. doi: 10.1126/science.1102556. Science. 2005. PMID: 15746419
-
Abiotic synthesis of organic compounds in deep-sea hydrothermal environments.Chem Rev. 2007 Feb;107(2):382-401. doi: 10.1021/cr0503660. Epub 2007 Jan 25. Chem Rev. 2007. PMID: 17253758 Review. No abstract available.
-
The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge.Astrobiology. 2015 May;15(5):381-99. doi: 10.1089/ast.2014.1198. Astrobiology. 2015. PMID: 25984920 Free PMC article. Review.
Cited by
-
Differentiating biotic from abiotic methane genesis in hydrothermally active planetary surfaces.Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9750-4. doi: 10.1073/pnas.1205223109. Epub 2012 Jun 7. Proc Natl Acad Sci U S A. 2012. PMID: 22679287 Free PMC article.
-
A Universal Geochemical Scenario for Formamide Condensation and Prebiotic Chemistry.Chemistry. 2019 Mar 1;25(13):3181-3189. doi: 10.1002/chem.201803889. Epub 2018 Dec 27. Chemistry. 2019. PMID: 30230056 Free PMC article. Review.
-
An Experimental Protocol for Studying Mineral Effects on Organic Hydrothermal Transformations.J Vis Exp. 2018 Aug 8;(138):58230. doi: 10.3791/58230. J Vis Exp. 2018. PMID: 30148481 Free PMC article.
-
The sluggish speed of making abiotic methane.Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):13944-13946. doi: 10.1073/pnas.1617103113. Epub 2016 Nov 28. Proc Natl Acad Sci U S A. 2016. PMID: 27911831 Free PMC article. No abstract available.
-
Generation of methane in the Earth's mantle: in situ high pressure-temperature measurements of carbonate reduction.Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14023-6. doi: 10.1073/pnas.0405930101. Epub 2004 Sep 20. Proc Natl Acad Sci U S A. 2004. PMID: 15381767 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources