Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;12(4):669-76.
doi: 10.1016/j.str.2004.03.006.

A docking approach to the study of copper trafficking proteins; interaction between metallochaperones and soluble domains of copper ATPases

Affiliations
Free article

A docking approach to the study of copper trafficking proteins; interaction between metallochaperones and soluble domains of copper ATPases

Fabio Arnesano et al. Structure. 2004 Apr.
Free article

Abstract

A structural model of the transient complex between the yeast copper chaperone Atx1 and the first soluble domain of the copper transporting ATPase Ccc2 was obtained with HADDOCK, combining NMR chemical shift mapping information with in silico docking. These two proteins are involved in copper trafficking in yeast cells. Calculations were performed starting with the copper ion either bound to Atx1 or to Ccc2 and using the experimental structures of the copper-loaded and apo forms of each protein. The copper binding motifs of the two proteins are found in close proximity. Copper tends to move from Atx1 to Ccc2, consistent with the physiological direction of transfer, with concomitant structural rearrangements, in agreement with experimental observations. The interaction is mainly of an electrostatic nature with hydrogen bonds stabilizing the complex. The structural data are relevant for a number of proteins homologous to Atx1 and Ccc2 and conserved from bacteria to humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources