Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 15;172(8):4744-51.
doi: 10.4049/jimmunol.172.8.4744.

Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production

Affiliations

Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production

Hyun-Ock Pae et al. J Immunol. .

Abstract

Heme oxygenase-1 (HO-1) catabolizes heme into CO, biliverdin, and free iron and serves as a protective enzyme by virtue of its anti-inflammatory, antiapoptotic, and antiproliferative actions. Previously, we have demonstrated that human CD4(+) T cells express HO-1 and that HO-1-overexpressing Jurkat T cells tend to display lower proliferative response. The aim of this study is to elucidate the mechanism(s) by which HO-1 can mediate its antiproliferative effect on CD4(+) T cells. Among the three HO-1 byproducts, only CO showed suppressive effect on T cell proliferation in response to anti-CD3 plus anti-CD28 Abs, mimicking the antiproliferative action of HO-1. CO blocked the cell cycle entry of T cells, which was independent of the guanylate cyclase/cGMP pathway. CO also suppressed the secretion of IL-2, and this suppressive effect of CO on IL-2 secretion mediated the antiproliferative action of CO. CO selectively inhibited the extracellular signal-regulated kinase pathway, which could explain the suppressive effects of CO on T cell proliferation and IL-2 secretion. Based on these findings, we suggest that HO-1/CO suppresses T cell proliferation and IL-2 secretion, possibly via its inhibition of extracellular signal-regulated kinase activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources