Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003:(67):129-37.
doi: 10.1007/978-3-7091-6721-2_11.

The MNB/DYRK1A protein kinase: neurobiological functions and Down syndrome implications

Affiliations
Review

The MNB/DYRK1A protein kinase: neurobiological functions and Down syndrome implications

B Hämmerle et al. J Neural Transm Suppl. 2003.

Abstract

Major attention is being paid in recent years to the genes harbored within the so called Down syndrome Critical Region of human chromosome 21. Among them, those genes with a possible brain function are becoming the focus of intense research due to the numerous neurobiological alterations and cognitive deficits that Down syndrome individuals have. MNB/DYRK1A is one of these genes. It encodes a protein kinase with unique genetic and biochemical properties, which have been evolutionarily conserved from insects to humans. MNB/DYRK1A is expressed in the developing brain where it seems to play a role in proliferation of neural progenitor cells, neurogenesis, and neuronal differentiation. Although at a lower level, MNB/DYRK1A is also expressed in the adult brain where, as judged by the phenotype of mutant and transgenic animals, it may be involved in learning and memory. Nevertheless, most of the molecular mechanisms underlying these functions remain to be unraveled. In this review we compile and discuss experimental evidences, which support the involvement of MNB/DYRK1A in several neuropathologies and cognitive deficits of Down syndrome.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources