Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul;110(1-2):205-14.
doi: 10.1016/0022-510x(92)90029-k.

Effects of chronic catecholamine depletions on muscarinic M1-receptor and its mRNA in rat brain

Affiliations

Effects of chronic catecholamine depletions on muscarinic M1-receptor and its mRNA in rat brain

M Asanuma et al. J Neurol Sci. 1992 Jul.

Abstract

In order to compare the effects of total catecholamine (CA) or noradrenaline (NA) depletions on cholinergic systems, and the mechanisms of receptor regulation in various brain regions, the regional changes in the levels of acetylcholine (ACh), M1-receptor (M1-R) binding, and M1-R messenger RNA (mRNA) were mainly examined in rats which had received either repeated reserpine treatment or a single injection of the selective noradrenergic neurotoxin N-2-chloroethyl-N-ethyl-2-bromo-benzylamine (DSP-4). The levels of dopamine (DA), its metabolites, NA, binding to both D1 and D2 sites, and the mRNA encoding the D2 receptor were also measured. Administration of reserpine (0.5 mg/kg/day, s.c.) for 2, 7 and 14 days depleted DA and NA in virtually all brain regions, while the short-term treatment increased DA metabolites in the striatum (at 2 days) and basal forebrain (at both 2 and 7 days). Administration of DSP-4 (50 mg/kg, i.p.) resulted in a specific loss of NA in the brain 10 days after the injection. These DSP-4 treated rats showed no change in the levels of ACh or M1-R except for an increase in ACh in the frontal cortex. In contrast, numerous changes in cholinergic indices were seen in the reserpine treated groups, and these changes varied from region to region of brain and with the length of drug treatment. In the striatum, ACh levels were increased in rats treated for 2 or 7 days but were normal after 14 days. M1-Rs were decreased at 14 days. These changes suggest that striatal DA, initially released by reserpine, inhibits the release of ACh from striatal cholinergic interneurons, while prolonged depletion of DA relieves this inhibition, leading to a subsequent down-regulation of M1-Rs. In the frontal cortex, ACh and M1-R levels were all decreased by reserpine treatment for 2 or 7 days, and the M1-Rs remained depressed at 14 days. In the basal forebrain, which contains the cholinergic cells that project to the cortex, DA metabolism was increased by 2 or 7 day reserpine treatment. This increased DAergic activity in the basal forebrain may facilitate cholinergic neurons, causing increased release of ACh in the frontal cortex. This, in turn, may lead to a down-regulation of the M1-Rs in that region. The levels of mRNAs encoding M1-Rs were increased in the striatum and frontal cortex by reserpine treatment, despite the decreases in the M1-Rs themselves.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources