Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;18(1):107-15.
doi: 10.1016/j.jvoice.2003.07.004.

Experimental study of the effects of surface mucus viscosity on the glottic cycle

Affiliations

Experimental study of the effects of surface mucus viscosity on the glottic cycle

Stéphane Ayache et al. J Voice. 2004 Mar.

Abstract

Numerous clinical findings indicate that viscosity of laryngeal mucosa is a crucial factor in glottal perfomance. Experience using experimental test benches has shown the importance of humidifying air stream used to induce vibration in excised larynges. Nevertheless, there is a lack of knowledge particularly regarding the physicochemical properties of laryngeal mucus. The purpose of this study was to research vocal fold vibration in excised larynges using artificial mucus of precisely known viscosity. Eight freshly harvested porcine larynges were examined. Parameters measured were Fo and vocal fold contact time. Measurements were performed under three conditions: basal (no fluid application on vocal cord surface), after application of a fluid of 60cP viscosity (Visc60), and after application of a fluid of 100cP viscosity (Visc100). Electroglottographic measurements were performed at two different times for each condition: 1 s after airflow onset (T1) and 6 seconds after airflow onset (T2). Statistical analysis consisted of comparing data obtained under each condition at T1 and T2. The results showed a significant decrease in Fo after application of Visc60 and Visc100 fluids and a decrease in Fo at T2. Closure time was significantly higher under Visc60 conditions and under Visc100 conditions than under basal conditions. Application of artificial mucus to the mucosa of the vocal folds lowered vibratory frequency and prolonged the contact phase. Our interpretation of this data is that the presence of mucus on the surface of the vocal folds generated superficial tension and caused adhesion, which is a source of nonlinearity in vocal vibration.

PubMed Disclaimer

LinkOut - more resources