Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;145(7):3297-306.
doi: 10.1210/en.2003-1658. Epub 2004 Apr 7.

Growth hormone alters epidermal growth factor receptor binding affinity via activation of extracellular signal-regulated kinases in 3T3-F442A cells

Affiliations

Growth hormone alters epidermal growth factor receptor binding affinity via activation of extracellular signal-regulated kinases in 3T3-F442A cells

Yao Huang et al. Endocrinology. 2004 Jul.

Abstract

Epidermal growth factor receptor (EGFR) is a transmembrane protein that binds EGF in its extracellular domain and initiates signaling via intrinsic tyrosine kinase activity in its cytoplasmic domain. EGFR is important in development, cellular proliferation, and cancer. GH is a critical growthpromoting and metabolic regulatory hormone that binds the GH receptor, thereby engaging various signaling pathways, including ERKs. Prior studies suggest cross-talk between the GH receptor and EGFR signaling systems. Using the GH- and EGF-responsive 3T3-F442A preadipocyte, we previously observed that GH, in addition to causing EGFR tyrosine phosphorylation, also induced EGFR phosphorylation that was detected by PTP101, an antibody reactive with ERK consensus phosphorylation sites. This latter phosphorylation was prevented by pretreatment with MAPK kinase (MEK)1 inhibitors, suggesting ERK pathway dependence. Furthermore, GH cotreatment with EGF markedly slowed EGF-induced EGFR degradation and down-regulation, thereby potentiating EGF-induced EGFR signaling. These effects were also MEK1 dependent and suggested ERK pathway-dependent influence of GH on EGF-induced EGFR postendocytic trafficking and signaling. We now explore the impact of GH on cell surface binding of EGF in 3T3-F442A cells. We found that GH pretreatment caused transient, but substantial, lessening of (125)I-EGF binding. Competitive binding experiments revealed that the decreased binding was primarily due to decreased affinity, rather than a change in the number of EGF binding sites. The effect of GH on EGF binding was concentration dependent and temporally correlated with GH-induced ERK activation and EGFR PTP101-reactive phosphorylation. Blockade of the MEK1/ERK but not the protein kinase C pathway, prevented GH's effects on EGF binding, and our results indicate that the mechanisms of GH- and phorbol-12-myristate-13-acetateinduced inhibition of EGF binding differ substantially. Overall, our findings suggest that GH can modulate both EGF binding kinetics and the EGFR's postbinding signaling itinerary in a MEK1/ERK pathway-dependent fashion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms