Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;26(2):161-6.
doi: 10.1179/016164104225013905.

Further development of reconstructive and cell tissue-engineering technology for treatment of complete peripheral nerve injury in rats

Affiliations

Further development of reconstructive and cell tissue-engineering technology for treatment of complete peripheral nerve injury in rats

Shimon Rochkind et al. Neurol Res. 2004 Mar.

Abstract

In this work we evaluated the efficacy of biodegradable composite co-polymer guiding neurotube, based on tissue-engineering technology, for the treatment of complete peripheral nerve injury where the nerve defect is significant. The right sciatic nerve of 12 three-month-old rats was completely transected and peripheral nerve segment was removed. A 2.2-cm biodegradable co-polymer neurotube containing viscous gel (NVR-N-Gel) with survival factors, neuroprotective agents and Schwann cells was placed between the proximal and the distal parts of the transected nerve for reconnection a 2-cm nerve defect. The proximal and distal parts of the nerve were fixed into the neurotube using 10-0 sutures. Ultrasound observation showed growth of the axons into the composite neurotube 2 months after the surgery. Electrophysiological study indicated compound muscle action potentials in nine out of 12 rats, 2-4 months after peripheral nerve reconstructive surgery. The postoperative follow-up (up to 4 months) on the operated rats that underwent peripheral nerve reconstruction using composite co-polymer neurotube, showed beginning of re-establishment of active foot movements. The tube was dissolved and nerve showed complete reconnection. Histological observation of the nerve showed growth of myelinated axons into the site where a 2-cm nerve defect replaced by composite co-polymer neurotube and into the distal part of the nerve.

In conclusion: (1) an innovative composite neurotube for reconstruction of significant loss of peripheral nerve segment is described; (2) a viscous gel, containing survival factors, neuroprotective agents and Schwann cells served as a regenerative environment for repair. Further investigations of this reconstructive procedure are being conducted.

PubMed Disclaimer

Substances

LinkOut - more resources