Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jan;15(1):15-22.
doi: 10.1177/095632020401500102.

Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine

Affiliations
Free article

Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine

Dale L Barnard et al. Antivir Chem Chemother. 2004 Jan.
Free article

Abstract

We evaluated two types of compounds for efficacy in inhibiting SARSCoV replication in vitro: calpain inhibitors (a class of cellular cysteine proteinases) and a number of nucleoside analogues. Cytopathic effect reduction assays visually determined with spectrophotometric verification by neutral red (NR) uptake assay were used to evaluate cytotoxicity and antiviral potency of the compounds. Significantly inhibitory compounds were then evaluated in virus yield reduction assays. Two calpain inhibitors, Val-Leu-CHO (calpain inhibitor VI) and Z-Val-Phe-Ala-CHO (calpain inhibitor III), were the most potent inhibitors of SARSCoV. By virus yield reduction assay, calpain inhibitor VI had a 90% effective concentration (EC90) of 3 microM and calpain inhibitor III had an EC90 of 15 microM. Beta-D-N4-hydroxycytidine was the most selective nucleoside analogue inhibitor with an EC90 of 6 microM by virus yield reduction assay. These compounds or analogues warrant further evaluation as potential therapies for treating SARS or could be used as lead compounds for discovery of more potent SARSCoV inhibitors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources