Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response
- PMID: 15075271
- PMCID: PMC387633
- DOI: 10.1128/EC.3.2.413-419.2004
Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response
Abstract
We found that the ingestion of Cryptococcus neoformans by Drosophila melanogaster resulted in the death of the fly but that the ingestion of Saccharomyces cerevisiae or the nonpathogenic Cryptococcus kuetzingii or Cryptococcus laurentii did not. The C. neoformans protein kinase A and RAS signal transduction pathways, previously shown to be involved in virulence in mammals, also played a role in killing Drosophila. Mutation of the Toll immune response pathway, the predominant antifungal pathway of the fly, did not play a role in Drosophila defense following ingestion of the yeast. However, the Toll pathway was necessary for the clearance of C. neoformans introduced directly into the hemolymph of D. melanogaster and for the survival of systemically infected flies.
Figures




Similar articles
-
Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis.Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15675-80. doi: 10.1073/pnas.232568599. Epub 2002 Nov 15. Proc Natl Acad Sci U S A. 2002. PMID: 12438649 Free PMC article.
-
Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.Nat Rev Immunol. 2014 Dec;14(12):796-810. doi: 10.1038/nri3763. Nat Rev Immunol. 2014. PMID: 25421701 Free PMC article. Review.
-
Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract.Biochem Biophys Res Commun. 2015 Nov 13;467(2):400-6. doi: 10.1016/j.bbrc.2015.09.138. Epub 2015 Sep 30. Biochem Biophys Res Commun. 2015. PMID: 26427875
-
Induction of signal transduction pathways related to the pathogenicity of Cryptococcus neoformans in the host environment.Drug Discov Ther. 2019;13(4):177-182. doi: 10.5582/ddt.2019.01047. Drug Discov Ther. 2019. PMID: 31534068 Review.
-
The immune response of Drosophila melanogaster.Immunol Rev. 2004 Apr;198:59-71. doi: 10.1111/j.0105-2896.2004.0130.x. Immunol Rev. 2004. PMID: 15199954 Review.
Cited by
-
Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology.Virulence. 2011 Nov-Dec;2(6):521-7. doi: 10.4161/viru.2.6.18520. Virulence. 2011. PMID: 22186764 Free PMC article. Review.
-
Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections.Int J Mol Sci. 2013 Sep 23;14(9):19309-40. doi: 10.3390/ijms140919309. Int J Mol Sci. 2013. PMID: 24065108 Free PMC article. Review.
-
New technology and resources for cryptococcal research.Fungal Genet Biol. 2015 May;78:99-107. doi: 10.1016/j.fgb.2014.11.001. Epub 2014 Nov 15. Fungal Genet Biol. 2015. PMID: 25460849 Free PMC article. Review.
-
Drosophila as a model system to unravel the layers of innate immunity to infection.Open Biol. 2012 May;2(5):120075. doi: 10.1098/rsob.120075. Open Biol. 2012. PMID: 22724070 Free PMC article. Review.
-
Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence.Infect Immun. 2004 Aug;72(8):4731-40. doi: 10.1128/IAI.72.8.4731-4740.2004. Infect Immun. 2004. PMID: 15271935 Free PMC article.
References
-
- Alspaugh, J. A., L. M. Cavallo, J. R. Perfect, and J. Heitman. 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36:352-365. - PubMed
-
- Casadevall, A., and J. R. Perfect. 1998. Cryptococcus neoformans. ASM Press, Washington, D.C.
-
- Casadevall, A., A. L. Rosas, and J. D. Nosanchuk. 2000. Melanin and virulence in Cryptococcus neoformans. Curr. Opin. Microbiol. 3:354-358. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases