Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul 29;23(34):5864-70.
doi: 10.1038/sj.onc.1207711.

Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation

Affiliations

Human papillomavirus type 77 E6 protein selectively inhibits p53-dependent transcription of proapoptotic genes following UV-B irradiation

Silvia Giampieri et al. Oncogene. .

Retraction in

Abstract

DNA damage, such as that elicited by UV-B, can induce either a cell cycle arrest or apoptosis that can be signalled by the p53 protein through the activation of a number of downstream cellular target genes. In contrast to oncogenic anogenital human papillomaviruses (HPVs), which mediate proteolytic degradation of p53, the E6 protein of cutaneous HPVs, such as HPV 77, do not promote p53 degradation. We have previously shown, however, that expression of HPV 77 E6 can effectively block UV-induced apoptosis in cells that have UV-activated p53. Here, we report that expression of the E6 protein from the cutaneous HPV 77 attenuates the UV-induced transactivation of p53-regulated proapoptotic genes Fas, PUMAbeta, Apaf-1, PIG3. This inhibition of p53-activation of proapoptotic genes by HPV77 E6 is exerted selectively, as the increased expression of p53 target genes involved in cell cycle arrest or regulatory functions regulation, such as p21 and Hdm2, is unaffected. Our data suggest that HPV 77 E6 may play an important role in specifically deregulating p53-dependent transactivation of proapoptotic genes upon UV-B irradiation.

PubMed Disclaimer

Publication types

MeSH terms

Substances