Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Nov-Dec;40(6):527-37.
doi: 10.1682/jrrd.2003.11.0527.

Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses

Affiliations
Comparative Study

Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses

Thomas M Gavin et al. J Rehabil Res Dev. 2003 Nov-Dec.

Abstract

The analysis of current cervical collars (Aspen and Miami J collars) and cervical thoracic orthoses (CTOs) (Aspen 2-post and Aspen 4-post CTOs) in reducing cervical intervertebral and gross range of motion in flexion and extension was performed using 20 normal volunteer subjects. The gross sagittal motion of the head was measured relative to the horizon with the use of an optoelectronic motion measurement system. Simultaneous measurement of cervical intervertebral motion was performed with the use of a video fluoroscopy (VF) machine. Intervertebral motion was described as (1) the angular motion of each vertebra and (2) the translational motion of the vertebral centroid. We used surface electromyographic (EMG) signal data to compare subject efforts between the two collars and between the two CTOs. Each orthosis significantly reduced gross and intervertebral motion in flexion and extension (p < 0.05). No statistically significant differences were found between the Miami J and Aspen collars in reducing gross or intervertebral sagittal motion, except at C5-6. Both CTOs provided significantly more restriction of gross and intervertebral flexion and extension motion as compared to the two collars (p < 0.05). The Aspen 2-post CTO and 4-post CTO performed similarly in flexion, but the Aspen 4-post CTO provided significantly more restriction of extension motion (p < 0.05).

PubMed Disclaimer

Publication types

LinkOut - more resources