Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr 15;76(8):2355-66.
doi: 10.1021/ac0349781.

Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring

Affiliations

Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring

Jacek P Dworzanski et al. Anal Chem. .

Abstract

Detection and identification of pathogenic bacteria and their protein toxins play a crucial role in a proper response to natural or terrorist-caused outbreaks of infectious diseases. The recent availability of whole genome sequences of priority bacterial pathogens opens new diagnostic possibilities for identification of bacteria by retrieving their genomic or proteomic information. We describe a method for identification of bacteria based on tandem mass spectrometric (MS/MS) analysis of peptides derived from bacterial proteins. This method involves bacterial cell protein extraction, trypsin digestion, liquid chromatography MS/MS analysis of the resulting peptides, and a statistical scoring algorithm to rank MS/MS spectral matching results for bacterial identification. To facilitate spectral data searching, a proteome database was constructed by translating genomes of bacteria of interest with fully or partially determined sequences. In this work, a prototype database was constructed by the automated analysis of 87 publicly available, fully sequenced bacterial genomes with the GLIMMER gene finding software. MS/MS peptide spectral matching for peptide sequence assignment against this proteome database was done by SEQUEST. To gauge the relative significance of the SEQUEST-generated matching parameters for correct peptide assignment, discriminant function (DF) analysis of these parameters was applied and DF scores were used to calculate probabilities of correct MS/MS spectra assignment to peptide sequences in the database. The peptides with DF scores exceeding a threshold value determined by the probability of correct peptide assignment were accepted and matched to the bacterial proteomes represented in the database. Sequence filtering or removal of degenerate peptides matched with multiple bacteria was then performed to further improve identification. It is demonstrated that using a preset criterion with known distributions of discriminant function scores and probabilities of correct peptide sequence assignments, a test bacterium within the 87 database microorganisms can be unambiguously identified.

PubMed Disclaimer

Publication types

LinkOut - more resources