Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 5;86(3):251-60.
doi: 10.1002/bit.20020.

Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks

Affiliations

Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks

Tunahan Cakir et al. Biotechnol Bioeng. .

Abstract

Central carbon metabolism of the yeast Saccharomyces cerevisiae was analyzed using metabolic pathway analysis tools. Elementary flux modes for three substrates (glucose, galactose, and ethanol) were determined using the catabolic reactions occurring in yeast. Resultant elementary modes were used for gene deletion phenotype analysis and for the analysis of robustness of the central metabolism and network functionality. Control-effective fluxes, determined by calculating the efficiency of each mode, were used for the prediction of transcript ratios of metabolic genes in different growth media (glucose-ethanol and galactose-ethanol). A high correlation was obtained between the theoretical and experimental expression levels of 38 genes when ethanol and glucose media were considered. Such analysis was shown to be a bridge between transcriptomics and fluxomics. Control-effective flux distribution was found to be promising in in silico predictions by incorporating functionality and regulation into the metabolic network structure.

PubMed Disclaimer

Publication types