Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Apr;30(4):228-30.
doi: 10.1097/00004770-200404000-00011.

Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments

Affiliations
Comparative Study

Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments

Elio Berutti et al. J Endod. 2004 Apr.

Abstract

We evaluated the influence of manual preflaring and torque on the failure rate of rotary nickel-titanium ProTaper instruments Shaping 1 (S1), Shaping 2 (S2), Finishing 1 (F1), and Finishing 2 (F2). These factors were evaluated using an in vitro method by calculating the mean number of Endo-Training-Blocks shaped before file breakage under different conditions. Group A (S1 on simulators with no preflaring) shaped 10 blocks before failure, group B (S1 on manually preflared simulators) shaped 59 blocks (p<0.01 versus group A), group C (S2 with low torque) shaped 28 blocks, group D (S2 with high torque) shaped 48 blocks (p<0.01 versus group C), group E (F1 with low torque) shaped eight blocks, group F (F1 with high torque) shaped 23 blocks (p<0.01 versus group E), group G (F2 with low torque) shaped four blocks, and group H (F2 with high torque) shaped 11 blocks (p<0.01 versus group G). Manual preflaring creates a glide path for the instrument tip and is a major determinant in reducing the failure rate of these rotary nickel-titanium files. All instruments worked better at high torque.

PubMed Disclaimer

LinkOut - more resources