Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May;37(5):333-43.
doi: 10.1016/j.clinbiochem.2003.12.007.

Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models

Affiliations
Review

Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models

Michael B Boffa et al. Clin Biochem. 2004 May.

Abstract

Evidence continues to accumulate from epidemiological studies that elevated plasma concentrations of lipoprotein(a) [Lp(a)] are a risk factor for a variety of atherosclerotic and thrombotic disorders. Lp(a) is a unique lipoprotein particle consisting of a moiety identical to low-density lipoprotein to which the glycoprotein apolipoprotein(a) [apo(a)] that is homologous to plasminogen is covalently attached. These features have suggested that Lp(a) may contribute to both proatherogenic and prothrombotic/antifibrinolytic processes and in vitro studies have identified many such candidate mechanisms. Despite intensive research, however, definition of the molecular mechanisms underlying the epidemiological data has proven elusive. Moreover, an effective and well-tolerated regimen to lower Lp(a) levels has yet to be developed. The use of animal models holds great promise for resolving these questions. Establishment of animal models for Lp(a) has been hampered by the absence of this lipoprotein from common small laboratory animals. Transgenic mice and rabbits expressing human apo(a) have been developed and these have been used to: (i) examine regulation of apo(a) gene expression; (ii) study the mechanism and molecular determinants of Lp(a) assembly from LDL and apo(a); (iii) demonstrate that apo(a)/Lp(a) are indeed proatherogenic and antifibrinolytic; and (iv) identify structural domains in apo(a) that mediate its pathogenic effects. The recent construction of transgenic apo(a) rabbits is a particularly promising development in view of the excellent utility of the rabbit as a model of advanced atherosclerosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources