Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Jan;13(1):93-9.
doi: 10.1097/00041552-200401000-00013.

Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension

Affiliations
Review

Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension

Nosratola D Vaziri. Curr Opin Nephrol Hypertens. 2004 Jan.

Abstract

Purpose of review: Oxidative stress is frequently associated with, and is partly involved in, the pathogenesis of chronic renal failure, hypertension and their complications. In the past few years, considerable progress has been made in deciphering the impact and the molecular mechanism of oxidative stress in these disorders. This article is intended to provide an overview of oxidative stress in hypertension and chronic renal failure.

Recent findings: Recent studies have provided irrefutable evidence that oxidative stress can cause hypertension and hypertension can cause oxidative stress. The upregulation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase and the tubulointerstitial accumulation of activated T cells, macrophages and superoxide-producing cells are partly responsible for oxidative stress in several models of hypertension. Antioxidant therapy alleviates hypertension, averts nuclear factor kappa B activation, and mitigates tubulointerstitial inflammation in hypertensive animals. Oxidative stress contributes to hypertension, endothelial dysfunction and brain disorders in chronic renal failure animals, and is partly caused by the upregulation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase and the downregulation of superoxide dismutase.

Summary: Oxidative stress, hypertension and inflammation are closely interrelated and involve a spiralling vicious cycle that can lead to progressive deterioration of hypertension and target organ damage.

PubMed Disclaimer

MeSH terms