Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 May 14;317(4):1103-7.
doi: 10.1016/j.bbrc.2004.03.165.

Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer

Affiliations
Comparative Study

Gene expression profile of human mesenchymal stem cells during osteogenesis in three-dimensional thermoreversible gelation polymer

Keiichi Hishikawa et al. Biochem Biophys Res Commun. .

Abstract

This study attempted to characterize the ability of thermoreversible gelation polymer (TGP) to induce differentiation of human mesenchymal stem cells (hMSC) into osteoblasts. Using a long oligo microarray system consisting of 3760 genes, we compared the expression profiles of the cells in 2-dimensional (2D) culture, 3D culture in collagen gel, and 3D culture in TGP with or without osteogenic induction. Compared to 2D culture, the gene expression profile of hMSC showed almost the same pattern in TGP without osteogenic induction, but 72% of genes (2701/3760) were up-regulated in collagen gel. With osteogenic induction, hMSC showed higher ALP activity and osteocalcin production in TGP as compared to 2D culture. Moreover, up-regulation and down-regulation of osteogenic genes were augmented in 3D culture in TGP as compared to 2D culture. As TGP is chemically synthesized and completely free from pathogen such as prion in bovine spongiform encephalopathy, these results suggest that TGP could be applied clinically to induce osteogenic differentiation of hMSC.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources