Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb 27;336(4):929-42.
doi: 10.1016/j.jmb.2003.12.058.

Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions

Affiliations

Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions

George I Makhatadze et al. J Mol Biol. .

Abstract

Using computational and sequence analysis of bacterial cold shock proteins, we designed a protein (CspB-TB) that has the core residues of mesophilic protein from Bacillus subtilis(CspB-Bs) and altered distribution of surface charged residues. This designed protein was characterized by circular dichroism spectroscopy, and found to have secondary and tertiary structure similar to that of CspB-Bs. The activity of the CspB-TB protein as measured by the affinity to a single-stranded DNA (ssDNA) template at 25 degrees C is somewhat higher than that of CspB-Bs. Furthermore, the decrease in the apparent binding constant to ssDNA upon increase in temperature is much more pronounced for CspB-Bs than for CspB-TB. Temperature-induced unfolding (as monitored by differential scanning calorimetry and circular dichroism spectroscopy) and urea-induced unfolding experiments were used to compare the stabilities of CspB-Bs and CspB-TB. It was found that CspB-TB is approximately 20 degrees C more thermostable than CspB-Bs. The thermostabilization of CspB-TB relative to CspB-Bs is achieved by decrease in the enthalpy and entropy of unfolding without affecting their temperature dependencies, i.e. these proteins have similar heat capacity changes upon unfolding. These changes in the thermodynamic parameters result in the global stability function, i.e. Gibbs energy, deltaG(T), that is shifted to higher temperatures with only small changes in the maximum stability. Such a mechanism of thermostabilization, although predicted from the basic thermodynamic considerations, has never been identified experimentally.

PubMed Disclaimer

Publication types

LinkOut - more resources