Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;13(4-6):321-30.

Adaptation to rotating artificial gravity environments

Collaborators, Affiliations
  • PMID: 15096675
Review

Adaptation to rotating artificial gravity environments

James R Lackner et al. J Vestib Res. 2003.

Abstract

A series of pioneering experiments on adaptation to rotating artificial gravity environments was conducted in the 1960s. The results of these experiments led to the general belief that humans with normal vestibular function would not be able to adapt to rotating environments with angular velocities above 3 or 4 rpm. By contrast, our recent work has shown that sensory-motor adaptation to 10 rpm can be achieved relatively easily and quickly if subjects make the same movement repeatedly. This repetition allows the nervous system to gauge how the Coriolis forces generated by movements in a rotating reference frame are deflecting movement paths and endpoints and to institute corrective adaptations. Independent mechanisms appear to underlie restoration of straight movement paths and of accurate movement endpoints. Control of head movements involves adaptation of vestibulo-collic and vestibulo-spinal mechanisms as well as adaptation to motor control of the head as an inertial mass. The vestibular adaptation has a long time constant and the motor adaptation a short one. Surprisingly, Coriolis forces generated by natural turning and reaching movements in our normal environment are typically larger than those elicited in rotating artificial gravity environments. They are not recognized as such because self-generated Coriolis forces during voluntary trunk rotation are perceptually transparent. After adaptation to a rotating environment is complete, the Coriolis forces generated by movements within it also become transparent and are not felt although they are still present.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources