Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Mar;27(1):65-9.
doi: 10.1097/00004356-200403000-00009.

Predicting osteoarthritic knee rehabilitation outcome by using a prediction model developed by data mining techniques

Affiliations

Predicting osteoarthritic knee rehabilitation outcome by using a prediction model developed by data mining techniques

Sing-Fai Tam et al. Int J Rehabil Res. 2004 Mar.

Abstract

Artificial neural networks (ANN) have been applied to assist in clinical decision-making and prediction. While we consider possible effective treatments for patients with osteoarthritic knee such as Transcutaneous Electrical Nerve Stimulation (TENS), exercise, and TENS with exercise respectively, we have to select a treatment protocol for patients such that they would gain the best improvements according to their clinical conditions. To facilitate this functionality with the existing patient assessment, we hope to apply the ANN programming techniques to develop a computerized prediction system. A preliminary validation was performed to test the validity of the newly developed prediction protocol on knee rehabilitation. We input the key clinical attributes of 62 patients who have undergone the three above-mentioned knee treatments to the protocol. The expected pain improvement of each patient as predicted by the protocol was obtained. Spearman rank-order correlation was used to identify whether there was a significant correlation between the rankings of the observed and expected pain improvement. We found that the Spearman's rho was 0.424, which is statistically significant at p < 0.001. From this preliminary analysis, we are confident that this newly developed prediction protocol will be useful when deciding which treatment regime best suits a patient.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources