Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Apr 12;1655(1-3):400-8.
doi: 10.1016/j.bbabio.2003.06.005.

The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases

Affiliations
Review

The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases

Bernhard Kadenbach et al. Biochim Biophys Acta. .

Abstract

Apoptotic cell death can occur by two different pathways. Type 1 is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type 2 involves changes in mitochondrial integrity initiated by various effectors like Ca(2+), reactive oxygen species (ROS), Bax, or ceramide, leading to the release of cytochrome c and activation of caspase 9. The release of cytochrome c is followed by a decrease of the mitochondrial membrane potential DeltaPsi(m). Recent publications have demonstrated, however, that induction of apoptosis by various effectors involves primarily a transient increase of DeltaPsi(m) for unknown reason. Here we propose a new mechanism for the increased DeltaPsi(m) based on experiments on the allosteric ATP-inhibition of cytochrome c oxidase at high matrix ATP/ADP ratios, which was concluded to maintain low levels of DeltaPsi(m) in vivo under relaxed conditions. This regulatory mechanism is based on the potential-dependency of the ATP synthase, which has maximal activity at DeltaPsi(m)=100-120 mV. The mechanism is turned off either through calcium-activated dephosphorylation of cytochrome c oxidase or by 3,5-diiodo-L-thyronine, palmitate, and probably other so far unknown effectors. Consequently, energy metabolism changes to an excited state. We propose that this change causes an increase in DeltaPsi(m), a condition for the formation of ROS and induction of apoptosis.

PubMed Disclaimer

LinkOut - more resources