Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun 18;279(25):26351-7.
doi: 10.1074/jbc.M403801200. Epub 2004 Apr 20.

80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5)

Affiliations
Free article

80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5)

Dimitra Gkika et al. J Biol Chem. .
Free article

Abstract

The epithelial Ca(2+) channel transient receptor potential cation channel V5 (TRPV5) constitutes the apical Ca(2+) entry pathway in the process of active Ca(2+) reabsorption. Ca(2+) influx through TRPV5 is tightly controlled by modulators of Ca(2+) homeostasis, including 1,25-dihydroxyvitamin D(3) and dietary Ca(2+). However, little is known about intracellular proteins that interact with TRPV5 and directly regulate the activation of this channel. By the use of cDNA microarrays, the present study identified 80K-H as the first protein involved in the Ca(2+)-dependent control of the epithelial Ca(2+) channel TRPV5. 80K-H was initially identified as a protein kinase C substrate, but its biological function remains to be established. We demonstrated a specific interaction between 80K-H and TRPV5, co-localization of both proteins in the kidney, and similar transcriptional regulation by 1,25-dihydroxyvitamin D(3) and dietary Ca(2+). Furthermore, 80K-H directly bound Ca(2+), and inactivation of its two EF-hand structures totally abolished Ca(2+) binding. Electrophysiological studies using 80K-H mutants showed that three domains of 80K-H (the two EF-hand structures, the highly acidic glutamic stretch, and the His-Asp-Glu-Leu sequence) are critical determinants for TRPV5 activity. Importantly, inactivation of the EF-hand pair reduced the TRPV5-mediated Ca(2+) current and increased the TRPV5 sensitivity to intracellular Ca(2+), accelerating the feedback inhibition of the channel. None of the 80K-H mutants altered the TRPV5 plasma membrane localization nor the association of 80K-H with TRPV5, suggesting that 80K-H has a direct effect on TRPV5 activity. In conclusion, we report a novel function for 80K-H as a Ca(2+) sensor controlling TRPV5 channel activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources