Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 1;172(9):5213-21.
doi: 10.4049/jimmunol.172.9.5213.

Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10

Affiliations

Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10

Song Guo Zheng et al. J Immunol. .

Abstract

Thymus-derived, natural CD4(+)CD25(+) regulatory T cells can educate peripheral CD4(+)CD25(-) cells to develop suppressive activity by poorly understood mechanisms. TGF-beta has IL-2-dependent costimulatory effects on alloactivated naive, human CD4(+) T cells and induces them ex vivo to become potent contact-dependent, cytokine-independent suppressor cells. In this study, we report that CD4(+)CD25(+) cells are the targets of the costimulatory effects of IL-2 and TGF-beta. These cells do not divide, but, instead, greatly increase the numbers of CD4(+)CD25(-) cells that become CD25(+) cytokine-independent suppressor cells. These CD4(+)CD25(+) regulatory cells, in turn, induce other alloactivated CD4(+)CD25(-) cells to become potent suppressor cells by mechanisms that, surprisingly, require both cell contact and TGF-beta and IL-10. The suppressive effects of these secondary CD4(+)CD25(+) cells depend upon TGF-beta and IL-10. Moreover, both the naive CD4(+) cells induced by IL-2 and TGF-beta to become suppressor cells, and the subsequent CD4(+)CD25(-) cells educated by them to become suppressors express FoxP3. We suggest that the long-term effects of adoptively transferred natural-like CD4(+)CD25(+) regulatory cells induced ex vivo are due to their ability to generate new cytokine-producing CD4(+) regulatory T cells in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources