Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 1;172(9):5456-66.
doi: 10.4049/jimmunol.172.9.5456.

In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy

Affiliations

In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy

Yifa Chen et al. J Immunol. .

Abstract

Memory T cells have specific properties that are beneficial for rapid and efficient protection from pathogens previously encountered by a host. These same features of memory T cells may be deleterious in the context of a transplanted organ. Consistent with this contention is the accumulating evidence in experimental transplantation that previously sensitized animals are resistant to the effects of costimulatory blockade. Using a model of murine cardiac transplantation, we now demonstrate that alloreactive memory CD4(+) T cells prevent long-term allograft survival induced through donor-specific cell transfusion in combination with anti-CD40 ligand Ab (DST/anti-CD40L). We show that memory donor-reactive CD4(+) T cells responding through the direct or indirect pathways of allorecognition provide help for the induction of antidonor CD8(+) T effector cells and for Ab isotype switching, despite DST/anti-CD40L. The induced pathogenic antidonor immunity functions in multiple ways to subsequently mediate graft destruction. Our findings show that the varied functions of alloreactive memory CD4(+) T cells remain intact despite DST/anti-CD40L-based costimulatory blockade, a finding that will likely have important implications for designing approaches to induce tolerance in human transplant recipients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources