Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality
- PMID: 15100766
- DOI: 10.1039/b302118a
Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality
Abstract
This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.
Similar articles
-
Titanium-based dielectrophoresis devices for microfluidic applications.Biomed Microdevices. 2008 Aug;10(4):509-17. doi: 10.1007/s10544-007-9159-y. Biomed Microdevices. 2008. PMID: 18214682
-
Polymer microfabrication methods for microfluidic analytical applications.Electrophoresis. 2000 Jan;21(1):12-26. doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. Electrophoresis. 2000. PMID: 10634467 Review.
-
Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.Lab Chip. 2009 May 7;9(9):1274-81. doi: 10.1039/b813244e. Epub 2009 Feb 17. Lab Chip. 2009. PMID: 19370248
-
Design and fabrication of chemically robust three-dimensional microfluidic valves.Lab Chip. 2007 Sep;7(9):1209-11. doi: 10.1039/b705031c. Epub 2007 Jul 9. Lab Chip. 2007. PMID: 17713623
-
Microfluidics for flow cytometric analysis of cells and particles.Physiol Meas. 2005 Jun;26(3):R73-98. doi: 10.1088/0967-3334/26/3/R02. Epub 2005 Feb 1. Physiol Meas. 2005. PMID: 15798290 Review.
Cited by
-
Impedance characterization, degradation, and in vitro biocompatibility for platinum electrodes on BioMEMS.Biomed Microdevices. 2015 Feb;17(1):24. doi: 10.1007/s10544-014-9909-6. Biomed Microdevices. 2015. PMID: 25663443 Free PMC article.
-
Single cell electric impedance topography: mapping membrane capacitance.Lab Chip. 2009 Dec 7;9(23):3370-7. doi: 10.1039/b912881f. Epub 2009 Sep 18. Lab Chip. 2009. PMID: 19904403 Free PMC article.
-
Micro- and nanoengineering for stem cell biology: the promise with a caution.Trends Biotechnol. 2011 Aug;29(8):399-408. doi: 10.1016/j.tibtech.2011.03.006. Epub 2011 May 5. Trends Biotechnol. 2011. PMID: 21549437 Free PMC article. Review.
-
Enabling systems biology approaches through microfabricated systems.Anal Chem. 2013 Oct 1;85(19):8882-94. doi: 10.1021/ac401472y. Anal Chem. 2013. PMID: 23984862 Free PMC article.
-
A One-Square-Millimeter Compact Hollow Structure for Microfluidic Pumping on an All-Glass Chip.Micromachines (Basel). 2016 Apr 9;7(4):63. doi: 10.3390/mi7040063. Micromachines (Basel). 2016. PMID: 30407436 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources