Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;263(2 Pt 2):R292-300.
doi: 10.1152/ajpregu.1992.263.2.R292.

Entrainment of respiratory rhythm by periodic lung inflation: effect of airflow rate and duration

Affiliations

Entrainment of respiratory rhythm by periodic lung inflation: effect of airflow rate and duration

S Muzzin et al. Am J Physiol. 1992 Aug.

Abstract

In anesthesized, paralyzed, and mechanically ventilated rabbits, the rate and duration of airflow were varied to investigate the effect on the central respiratory rhythm during 1:1 entrainment (1 phrenic nerve burst for 1 pump inflation). Our results showed that 1) the largest range of 1:1 entrainment was obtained with the longest inflation durations associated with the lowest flow rates and 2) both inspiratory (TI) and expiratory (TE) durations (as estimated by the period of phrenic nerve activity and phrenic nerve silence, respectively) increased when total respiratory duration (TT = TI+TE) increased. The phase relationships we studied were DI (the time elapsing between the onset of phrenic activity and the beginning of pump inflation) and DE (the time between the end of phrenic activity and the end of pump inflation). Both DI and DE increased when the total ventilatory period increased. However, for constant ventilatory period, DI changed with the rate and duration of airflow, whereas DE remained constant. In addition, under these conditions, TI, TE, and the integrated phrenic nerve activity remained constant independently of airflow rate and duration. The present results are discussed with regard to the pulmonary receptors (slowly and rapidly adapting receptors and C fibers) that are stimulated during mechanical ventilation, and hypotheses are drawn regarding their possible contribution to rhythm generation and the mechanism through which they may act.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources