Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;131(10):2395-408.
doi: 10.1242/dev.01102. Epub 2004 Apr 21.

Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction

Affiliations

Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction

Carlos Torroja et al. Development. 2004 May.

Abstract

The Hedgehog (Hh) morphogenetic gradient controls multiple developmental patterning events in Drosophila and vertebrates. Patched (Ptc), the Hh receptor, restrains both Hh spreading and Hh signaling. We report how endocytosis regulates the concentration and activity of Hh in the wing imaginal disc. Our studies show that Ptc limits the Hh gradient by internalizing Hh through endosomes in a dynamin-dependent manner, and that both Hh and Ptc are targeted to lysosomal degradation. We also found that the ptc(14) mutant does not block Hh spreading, as it has a failure in endocytosis. However, this mutant protein is able to control the expression of Hh target genes as the wild-type protein, indicating that the internalization mediated by Ptc is not required for signal transduction. In addition, we noted that both in this mutant and in those not producing Ptc protein, Hh still occurred in the endocytic vesicles of Hh-receiving cells, suggesting the existence of a second, Ptc-independent, mechanism of Hh internalization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms