Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2004 May 15;127A(1):44-49.
doi: 10.1002/ajmg.a.20652.

Gene responsible for mitochondrial myopathy and sideroblastic anemia (MSA) maps to chromosome 12q24.33

Affiliations
Case Reports

Gene responsible for mitochondrial myopathy and sideroblastic anemia (MSA) maps to chromosome 12q24.33

Kari Casas et al. Am J Med Genet A. .

Abstract

Mitochondrial myopathy and sideroblastic anemia (MSA) is a rare autosomal recessive disorder of oxidative phosphorylation and iron metabolism. Individuals with MSA present with weakness and anemia in late childhood and may become dependent on blood transfusions. Recently, we reported affected sibling pairs from a Jewish-Iranian kindred living in the US [Casas and Fischel-Ghodsian, 2003]. A genome scan and fine mapping of DNA from this family revealed homozygous alleles in the affected individuals, and a multipoint logarithm of the odds (lod) score of 3.3, within 2.3 mb of chromosome 12q24.33. Previously, Inbal et al. [1995: Am J Med Genet 55:372-378] described siblings with a similar clinical phenotype who lived in Israel but originated from the same Iranian town as the US family. Focused analysis of DNA from the Israeli family confirmed the presence of identical, homozygous alleles in the affected of the US and Israeli families within 1.2 mb of chromosome 12q24.33. Combined multipoint linkage analysis revealed a maximum lod score of 5.41 at the 132 cM position of chromosome 12. Therefore, in these two families of Jewish-Iranian descent, a disease gene for MSA maps to a 1.2 mb region of chromosome 12q24.33. This region contains 6 well described genes (SFRS8, MMP17, ULK1, PUS1, EP400, and GALNT9) and at least 15 additional putative transcripts. The known genes are expressed in multiple tissues and lack a function specific to mitochondria, making none an obvious candidate. The eventual identification of the disease gene in MSA is expected to provide insight into the tissue specificity and phenotypic variability of mitochondrial disease.

Mitochondrial myopathy and sideroblastic anemia (MSA) is a rare autosomal recessive disorder of oxidative phosphorylation and iron metabolism. Individuals with MSA present with weakness and anemia in late childhood and may become dependent on blood transfusions. Recently, we reported affected sibling pairs from a Jewish-Iranian kindred living in the US [Casas and Fischel-Ghodsian, 2003]. A genome scan and fine mapping of DNA from this family revealed homozygous alleles in the affected individuals, and a multipoint logarithm of the odds (lod) score of 3.3, within 2.3 mb of chromosome 12q24.33. Previously, Inbal et al. [1995: Am J Med Genet 55:372-378] described siblings with a similar clinical phenotype who lived in Israel but originated from the same Iranian town as the US family. Focused analysis of DNA from the Israeli family confirmed the presence of identical, homozygous alleles in the affected of the US and Israeli families within 1.2 mb of chromosome 12q24.33. Combined multipoint linkage analysis revealed a maximum lod score of 5.41 at the 132 cM position of chromosome 12. Therefore, in these two families of Jewish-Iranian descent, a disease gene for MSA maps to a 1.2 mb region of chromosome 12q24.33. This region contains 6 well described genes (SFRS8, MMP17, ULK1, PUS1, EP400, and GALNT9) and at least 15 additional putative transcripts. The known genes are expressed in multiple tissues and lack a function specific to mitochondria, making none an obvious candidate. The eventual identification of the disease gene in MSA is expected to provide insight into the tissue specificity and phenotypic variability of mitochondrial disease.

PubMed Disclaimer

References

REFERENCES

    1. Benson G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27: 573-580.
    1. Bione S, Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. 1996. A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nat Genet 12: 385-389.
    1. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A. 1996. Friedreich ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271: 1423-1427.
    1. Casas K, Fischel-Ghodsian N. 2003. Mitochondrial myopathy and sideroblastic anemia. Am J Med Genet (in press).
    1. DiMauro S, Schon E. 2003. Mitochondrial respiratory-chain diseases. N Engl J Med 348: 2656-2668.

Publication types

LinkOut - more resources