Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;6(6):569-80.
doi: 10.1111/j.1462-5822.2004.00383.x.

After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase

Affiliations

After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase

Constance Mehlgarten et al. Cell Microbiol. 2004 Jun.

Abstract

Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources