Femoral bone adaptation to unstable long-term cemented total hip arthroplasty in dogs
- PMID: 15104630
- DOI: 10.1111/j.1532-950X.2004.04035.x
Femoral bone adaptation to unstable long-term cemented total hip arthroplasty in dogs
Abstract
Objective: To evaluate femoral adaptation after unstable long-term cemented total hip arthroplasty (cTHA) in dogs.
Study design: Clinical study.
Animals: Four dogs.
Methods: Paired femurs were examined from client-owned dogs that were donated to a retrieval program after death from causes unrelated to their cTHA. Mean (+/-SEM) dog age was 10.0+/-1.5 years and implant duration was 6.0+/-1.4 years. Implanted femurs had radiographic changes associated with implant loosening and gross mechanical instability at femur retrieval. Femurs were evaluated at 3 levels relative to implant length. Cortical area and medullary area were measured at each level, and cortical porosity was assessed at each level in 4 quadrants and in 3 regions. Implanted femurs were compared with the contralateral non-implanted femurs.
Results: Cortical area and cortical porosity were increased at all levels in femurs with unstable implants. Implanted femurs had increased porosity in all quadrants and regions at the proximal 2 levels, and increased porosity in only the cranial quadrant and mid-cortical area at the distal level, when compared with contralateral non-implanted femurs. Corresponding medullary areas were not different.
Conclusions: Significant histomorphometric changes occur in femurs after unstable cTHA. The patterns of periosteal bone formation and endosteal bone resorption support mechanisms of stress shielding and wear debris-mediated osteolysis as factors that may contribute to femoral adaptation and implant loosening.
Clinical relevance: Despite popularity and excellent return to function with cTHA, aseptic loosening remains a serious long-term complication. Substantial net bone loss and unfavorable environment with unstable cTHA may make revision surgery less successful.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical