Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May;98(5):1297-304, table of contents.
doi: 10.1213/01.ane.0000111108.78745.ad.

The effects of isoflurane on desensitized wild-type and alpha 1(S270H) gamma-aminobutyric acid type A receptors

Affiliations

The effects of isoflurane on desensitized wild-type and alpha 1(S270H) gamma-aminobutyric acid type A receptors

Adam C Hall et al. Anesth Analg. 2004 May.

Abstract

gamma-aminobutyric acid type A receptors (GABA(A)-R) mediate synaptic inhibition and meet many pharmacological criteria required of important general anesthetic targets. During synaptic transmission GABA release is sufficient to saturate, maximally activate, and transiently desensitize postsynaptic GABA(A)-Rs. The resulting inhibitory postsynaptic currents (IPSCs) are prolonged by volatile anesthetics like isoflurane. We investigated the effects of isoflurane on maximally activated and desensitized GABA(A)-R currents expressed in Xenopus oocytes. Wild-type alpha(1)beta(2) and alpha(1)beta(2)gamma(2s) receptors were exposed to 600 microM GABA until currents reached a steady-state desensitized level. At clinical concentrations (0.02-0.3 mM), isoflurane produced a dose-dependent enhancement of steady-state desensitized current in alpha(1)beta(2) receptors, an effect that was less apparent in receptors including a gamma(2s)-subunit. When serine at position 270 is mutated to histidine (alpha(1)(S270H)) in the second transmembrane segment of the alpha(1)-subunit, the currents evoked by sub-saturating concentrations of GABA became less sensitive to isoflurane enhancement. In addition, isoflurane enhancements of desensitized currents were greatly attenuated by this mutation and were undetectable in alpha(1)(S270H)beta(2)gamma(2s) receptors. In conclusion, isoflurane enhancement of GABA(A)-R currents evoked by saturating concentrations of agonist is subunit-dependent. The effects of isoflurane on desensitized receptors may be partly responsible for the prolongation of IPSCs during anesthesia.

Implications: Isoflurane enhances desensitized gamma-aminobutyric acid type A receptor (GABA(A)-R) currents, an effect that is subunit-dependent and attenuated by a mutation in an alpha(1)-subunit pore residue of the GABA(A)-R. As GABA release at inhibitory synapses is typically saturating, isoflurane modulation of desensitized receptors may be partly responsible for prolongation of inhibitory postsynaptic currents during anesthesia.

PubMed Disclaimer

Publication types

LinkOut - more resources