Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jul;18(7):1787-97.
doi: 10.1210/me.2004-0091. Epub 2004 Apr 22.

Human loss-of-function gonadotropin-releasing hormone receptor mutants retain wild-type receptors in the endoplasmic reticulum: molecular basis of the dominant-negative effect

Affiliations

Human loss-of-function gonadotropin-releasing hormone receptor mutants retain wild-type receptors in the endoplasmic reticulum: molecular basis of the dominant-negative effect

Shaun P Brothers et al. Mol Endocrinol. 2004 Jul.

Abstract

The GnRH receptor (GnRHR) is a heptahelical G protein-coupled receptor found in the plasma membrane of pituitary gonadotropes. GnRHR mutants isolated from patients with hypogonadotropic hypogonadism (HH) are frequently mislocalized proteins that can be restored to function by pharmacological chaperones. Nonfunctional HH mutants inhibit ligand binding and ligand-activated second messenger production by wild-type (WT) receptor when both are coexpressed in vitro. In this study, confocal microscopy of fluorescently labeled GnRHR was used to show that the dominant-negative effect, which occurs for human (but not for rodent) GnRHR, results from WT receptor retention in the endoplasmic reticulum by mislocalized mutants. Mutants hGnRHR(E90K), hGnRHR(L266R), and hGnRHR(S168R) were selected for study because they are known to be fully rescuable, partially rescuable, or nonrescuable (respectively) by a specific pharmacological chaperone. This chaperone corrects folding errors and promotes correct intracellular routing. Using this drug we showed that correcting routing of the mutant protein also rescues the WT receptor. Because of the large number of human diseases that appear to be caused by defective protein folding and subsequent mislocalization, it is likely that endoplasmic reticulum retention is a common cause of dominant-negative actions for other diseases involving G protein-coupled receptors, as appears to be the case in HH and for which there exists a potential therapeutic agent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources