Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 3;43(9):2988-97.
doi: 10.1021/ic030331n.

Reactions of NO with Mn(II) and Mn(III) centers coordinated to carboxamido nitrogen: synthesis of a manganese nitrosyl with photolabile NO

Affiliations
Free article

Reactions of NO with Mn(II) and Mn(III) centers coordinated to carboxamido nitrogen: synthesis of a manganese nitrosyl with photolabile NO

Kaushik Ghosh et al. Inorg Chem. .
Free article

Abstract

The Mn(II) and Mn(III) complexes of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H; H is the dissociable carboxamide H), namely, [Mn(PaPy3)(H2O)]ClO4 (1) and [Mn(PaPy3)(Cl)]ClO4 (2), with bound carboxamido nitrogen have been isolated and characterized. The high-spin Mn(II) center in 1 is very sensitive to dioxygen, and this complex is rapidly converted into 2 upon reaction with Cl- in air. The bound carboxamido nitrogen in 1 is responsible for this sensitivity toward oxidation since the analogous Schiff base complex [Mn(SBPy3)Cl]ClO4 (4) is very resistant to oxidation. Reaction of NO with 1 affords the diamagnetic [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)]ClO4 (5). Complexes with no bound carboxamido nitrogen such as 4 and [Mn(PaPy3H)(Cl)2] (3) do not react with NO. No reaction with NO is observed with the Mn(III) complexes 2 and [Mn(PaPy3)(MeCN)]2+ either. Collectively these reactions indicate that NO reacts only with the Mn(II) center ligated to at least one carboxamido nitrogen. Both the carbonyl and N-O stretching frequencies (nu(CO) and nu(NO)) of the present and related complexes strongly suggest a [low-spin Mn(II)-NO*] formulation for 5. The alternative description [low-spin Mn(I)-NO+] is not supported by the spectroscopic and redox behavior of 5. Complex 5 is the first example of a [Mn-NO]6 nitrosyl that exhibits photolability of NO upon illumination with low-intensity tungsten lamps in solvents such as MeCN and H2O. The rapid NO loss from 5 leads to the formation of the corresponding solvato species [Mn(PaPy3)(MeCN)]2+ under aerobic conditions. Oxidation of 5 with (NH4)2[Ce(NO3)6] in MeCN affords the highly reactive paramagnetic (S = 1/2) [MnNO]5 nitrosyl [Mn(PaPy3)(NO)](NO3)2 (6) in high yield. Spectroscopic and magnetic studies confirm a [low-spin Mn(II)-NO+] formulation for 6. The N-O stretching frequencies (nu(NO)) of 5, 6, and analogous nitrosyls reported by other groups collectively suggest that nu(NO) is a better indicator of the oxidation state of NO (NO+, NO*, or NO-) in non-heme iron and other transition-metal complexes with bound NO.

PubMed Disclaimer

Similar articles

Cited by

Publication types