Vascular smooth muscle mitochondria at the cross roads of Ca(2+) regulation
- PMID: 15110141
- DOI: 10.1016/j.ceca.2004.01.020
Vascular smooth muscle mitochondria at the cross roads of Ca(2+) regulation
Abstract
Mitochondria play an essential role in the regulation of vascular smooth muscle Ca(2+) signaling being simultaneously integrated in the regulation of ion channels and Ca(2+) transporters, oxygen radical production, metabolite recycling and intracellular redox potential. Mitochondria buffer Ca(2+) from cytoplasmic microdomains to alter the spatio-temporal pattern of Ca(2+) gradients following Ca(2+)-influx and Ca(2+)-release, and thus control site-specific, Ca(2+)-dependent ion channel activation and inactivation. The sub-cellular localization of mitochondria in conjunction with tissue-specific channel expression is fundamental to vascular heterogeneity. The mitochondrial electron transport chain recycles metabolic intermediates that modulate cellular redox potential and produces oxygen radicals in proportion to oxygen tension. Perturbation of specific complexes within the transport chain can affects NADH:NAD and ATP:ADP ratios and radical production, which can in turn influence second messenger metabolism, ion channel gating and Ca(2+)-transporter activity. Mitochondria thus provide the common ground for cross-talk between these regulatory systems that are mutually sensitive to one another. This cross-talk between signaling systems provides a means to render the physiological regulation of vascular tone responsive to complex stimulation by paracrine and endocrine factors, blood pressure and flow, tissue oxygenation and metabolic state.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
