The effect of pH on the structural evolution of accelerated biomimetic apatite
- PMID: 15110483
- DOI: 10.1016/j.biomaterials.2003.12.037
The effect of pH on the structural evolution of accelerated biomimetic apatite
Abstract
The classic biomimetic apatite coating process can be accelerated by first immersing substrates into concentrated simulated body fluid, 5x SBF (SBF1), at 37 degrees C, to form an initial coating of precursor apatite spheres, and subsequently transferring to a second 5x SBF (SBF2) solution which is devoid of crystal growth inhibitors to promote phase transformation of SBF1-derived precursor apatite spheres into final crystalline apatite plates. Since SBF1 governs the formation kinetics and composition of the initial precursor spheres, we hypothesized that the pH of the SBF1 solution will also influence the final structure of the SBF2-derived crystalline apatite. To test this hypothesis, polystyrene substrates were immersed into SBF1 with different pH (5.8 or 6.5), and then immersed into the identical SBF2 (pH=6.0). The resultant apatites exhibited similar 2 theta XRD peaks; FTIR spectra in terms of hydroxyl, phosphate and carbonate groups; and Ca/P atomic ratio (1.42 for SBF1(5.8) apatite; 1.48 for SBF1(6.5) apatite). SEM, TEM and electron diffraction show that while SBF1(6.5) (pH 6.5) precursor spheres transform into larger, single crystals plates, SBF1(5.8) (pH 5.8) precursor spheres developed minute, polycrystalline plate-like structures over predominantly spherical precursor substrate.
Similar articles
-
Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.Acta Biomater. 2008 May;4(3):560-8. doi: 10.1016/j.actbio.2007.10.003. Epub 2007 Oct 22. Acta Biomater. 2008. PMID: 18053780
-
The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression.Biomaterials. 2005 Jan;26(3):285-95. doi: 10.1016/j.biomaterials.2004.02.030. Biomaterials. 2005. PMID: 15262470
-
Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.Acta Biomater. 2008 May;4(3):553-9. doi: 10.1016/j.actbio.2007.11.008. Epub 2007 Dec 7. Acta Biomater. 2008. PMID: 18207469
-
Coating of bone-like apatite for development of bioactive materials for bone reconstruction.Biomed Mater. 2007 Dec;2(4):R17-23. doi: 10.1088/1748-6041/2/4/R01. Epub 2007 Nov 2. Biomed Mater. 2007. PMID: 18458474 Review.
-
Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds.Biomed Res Int. 2013;2013:490946. doi: 10.1155/2013/490946. Epub 2013 Jul 29. Biomed Res Int. 2013. PMID: 23984373 Free PMC article. Review.
Cited by
-
Citrate-based Biodegradable Injectable hydrogel Composites for Orthopedic Applications.Biomater Sci. 2013 Jan 1;1(1):52-64. doi: 10.1039/C2BM00026A. Biomater Sci. 2013. PMID: 23977427 Free PMC article.
-
Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers.Biomaterials. 2009 Oct;30(30):6094-101. doi: 10.1016/j.biomaterials.2009.07.046. Epub 2009 Aug 11. Biomaterials. 2009. PMID: 19674782 Free PMC article.
-
Sustained plasmid DNA release from dissolving mineral coatings.Acta Biomater. 2010 Sep;6(9):3426-35. doi: 10.1016/j.actbio.2010.03.020. Epub 2010 Mar 18. Acta Biomater. 2010. PMID: 20304109 Free PMC article.
-
In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering.Bioact Mater. 2017 Apr 21;2(3):146-155. doi: 10.1016/j.bioactmat.2017.04.004. eCollection 2017 Sep. Bioact Mater. 2017. PMID: 29744424 Free PMC article.
-
Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template.J Mater Res. 2008 Feb 1;23(2):478-485. doi: 10.1557/JMR.2008.0051. J Mater Res. 2008. PMID: 19763228 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous