Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jun;46(8):1082-8.
doi: 10.1016/j.neuropharm.2004.02.007.

GABAA and GABAB receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour

Affiliations
Comparative Study

GABAA and GABAB receptors in the nucleus accumbens shell differentially modulate dopamine and acetylcholine receptor-mediated turning behaviour

Gaku Akiyama et al. Neuropharmacology. 2004 Jun.

Abstract

The ability of GABAA and GABAB receptors in the shell of the nucleus accumbens to modulate distinct types of turning behaviour was investigated in freely moving rats, using the unilateral injection technique. The GABAA receptor agonist muscimol and the GABAA receptor antagonist bicuculline did not produce turning behaviour; the same holds for the GABAB agonist baclofen and the GABAB antagonist 2-hydroxysaclofen. A mixture of the dopamine D1 receptor agonist SKF 38393 and the dopamine D(2/3) receptor agonist quinpirole has been found to elicit contraversive pivoting, when injected into the shell. This pivoting was dose-dependently inhibited by muscimol, and the inhibitory effect of muscimol was antagonised by bicuculline. Pivoting was also dose-dependently inhibited by baclofen; however, 2-hydroxysaclofen did not antagonise the inhibitory effect. The acetylcholine receptor agonist carbachol has been found to elicit contraversive circling, when injected into the shell. This carbachol-induced circling was inhibited by baclofen, and 2-hydroxysaclofen antagonised the inhibitory effect. Carbachol-induced circling was also partially inhibited by muscimol; however, the inhibitory effect of muscimol was not antagonised by bicuculline. It is concluded that mesolimbic GABAA receptors exert an inhibitory control on dopamine-dependent pivoting that can be elicited from the shell of the nucleus accumbens, and that GABAB receptors exert an inhibitory control on acetylcholine-dependent circling that can be elicited from the shell of the nucleus accumbens. This data extends the earlier reported findings that the neurochemical substrate in the shell of the nucleus accumbens that mediates dopamine-dependent pivoting is fundamentally different from the shell substrate that mediates acetylcholine-dependent circling.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources